彩神_彩神
彩神2023-01-31 16:05

彩神

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?******

  相比起今年诺贝尔生理学或医学奖、物理学奖的高冷,今年诺贝尔化学奖其实是相当接地气了。

  你或身边人正在用的某些药物,很有可能就来自他们的贡献。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  2022 年诺贝尔化学奖因「点击化学和生物正交化学」而共同授予美国化学家卡罗琳·贝尔托西、丹麦化学家莫滕·梅尔达、美国化学家巴里·夏普莱斯(第5位两次获得诺贝尔奖的科学家)。

  一、夏普莱斯:两次获得诺贝尔化学奖

  2001年,巴里·夏普莱斯因为「手性催化氧化反应[1] [2] [3]」获得诺贝尔化学奖,对药物合成(以及香料等领域)做出了巨大贡献。

  今年,他第二次获奖的「点击化学」,同样与药物合成有关。

  1998年,已经是手性催化领军人物的夏普莱斯,发现了传统生物药物合成的一个弊端。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  过去200年,人们主要在自然界植物、动物,以及微生物中能寻找能发挥药物作用的成分,然后尽可能地人工构建相同分子,以用作药物。

  虽然相关药物的工业化,让现代医学取得了巨大的成功。然而随着所需分子越来越复杂,人工构建的难度也在指数级地上升。

  虽然有的化学家,的确能够在实验室构造出令人惊叹的分子,但要实现工业化几乎不可能。

  有机催化是一个复杂的过程,涉及到诸多的步骤。

  任何一个步骤都可能产生或多或少的副产品。在实验过程中,必须不断耗费成本去去除这些副产品。

  不仅成本高,这还是一个极其费时的过程,甚至最后可能还得不到理想的产物。

  为了解决这些问题,夏普莱斯凭借过人智慧,提出了「点击化学(Click chemistry)」的概念[4]。

  点击化学的确定也并非一蹴而就的,经过三年的沉淀,到了2001年,获得诺奖的这一年,夏普莱斯团队才完善了「点击化学」。

  点击化学又被称为“链接化学”,实质上是通过链接各种小分子,来合成复杂的大分子。

  夏普莱斯之所以有这样的构想,其实也是来自大自然的启发。

  大自然就像一个有着神奇能力的化学家,它通过少数的单体小构件,合成丰富多样的复杂化合物。

  大自然创造分子的多样性是远远超过人类的,她总是会用一些精巧的催化剂,利用复杂的反应完成合成过程,人类的技术比起来,实在是太粗糙简单了。

  大自然的一些催化过程,人类几乎是不可能完成的。

  一些药物研发,到了最后却破产了,恰恰是卡在了大自然设下的巨大陷阱中。

   夏普莱斯不禁在想,既然大自然创造的难度,人类无法逾越,为什么不还给大自然,我们跳过这个步骤呢?

  大自然有的是不需要从头构建C-C键,以及不需要重组起始材料和中间体。

  在对大型化合物做加法时,这些C-C键的构建可能十分困难。但直接用大自然现有的,找到一个办法把它们拼接起来,同样可以构建复杂的化合物。

  其实这种方法,就像搭积木或搭乐高一样,先组装好固定的模块(甚至点击化学可能不需要自己组装模块,直接用大自然现成的),然后再想一个方法把模块拼接起来。

  诺贝尔平台给三位化学家的配图,可谓是形象生动[5] [6]:

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  夏普莱斯从碳-杂原子键上获得启发,构想出了碳-杂原子键(C-X-C)为基础的合成方法。

  他的最终目标,是开发一套能不断扩展的模块,这些模块具有高选择性,在小型和大型应用中都能稳定可靠地工作。

  「点击化学」的工作,建立在严格的实验标准上:

  反应必须是模块化,应用范围广泛

  具有非常高的产量

  仅生成无害的副产品

  反应有很强的立体选择性

  反应条件简单(理想情况下,应该对氧气和水不敏感)

  原料和试剂易于获得

  不使用溶剂或在良性溶剂中进行(最好是水),且容易移除

  可简单分离,或者使用结晶或蒸馏等非色谱方法,且产物在生理条件下稳定

  反应需高热力学驱动力(>84kJ/mol)

  符合原子经济

  夏尔普莱斯总结归纳了大量碳-杂原子,并在2002年的一篇论文[7]中指出,叠氮化物和炔烃之间的铜催化反应是能在水中进行的可靠反应,化学家可以利用这个反应,轻松地连接不同的分子。

  他认为这个反应的潜力是巨大的,可在医药领域发挥巨大作用。

  二、梅尔达尔:筛选可用药物

  夏尔普莱斯的直觉是多么地敏锐,在他发表这篇论文的这一年,另外一位化学家在这方面有了关键性的发现。

  他就是莫滕·梅尔达尔。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  梅尔达尔在叠氮化物和炔烃反应的研究发现之前,其实与“点击化学”并没有直接的联系。他反而是一个在“传统”药物研发上,走得很深的一位科学家。

  为了寻找潜在药物及相关方法,他构建了巨大的分子库,囊括了数十万种不同的化合物。

  他日积月累地不断筛选,意图筛选出可用的药物。

  在一次利用铜离子催化炔与酰基卤化物反应时,发生了意外,炔与酰基卤化物分子的错误端(叠氮)发生了反应,成了一个环状结构——三唑。

  三唑是各类药品、染料,以及农业化学品关键成分的化学构件。过去的研发,生产三唑的过程中,总是会产生大量的副产品。而这个意外过程,在铜离子的控制下,竟然没有副产品产生。

  2002年,梅尔达尔发表了相关论文。

  夏尔普莱斯和梅尔达尔也正式在“点击化学”领域交汇,并促使铜催化的叠氮-炔基Husigen环加成反应(Copper-Catalyzed Azide–Alkyne Cycloaddition),成为了医药生物领域应用最为广泛的点击化学反应。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  三、贝尔托齐西:把点击化学运用在人体内

  不过,把点击化学进一步升华的却是美国科学家——卡罗琳·贝尔托西。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  虽然诺奖三人平分,但不难发现,卡罗琳·贝尔托西排在首位,在“点击化学”构图中,她也在C位。

  诺贝尔化学奖颁奖时,也提到,她把点击化学带到了一个新的维度。

  她解决了一个十分关键的问题,把“点击化学”运用到人体之内,这个运用也完全超出创始人夏尔普莱斯意料之外的。

  这便是所谓的生物正交反应,即活细胞化学修饰,在生物体内不干扰自身生化反应而进行的化学反应。

  卡罗琳·贝尔托西打开生物正交反应这扇大门,其实最开始也和“点击化学”无关。

  20世纪90年代,随着分子生物学的爆发式发展,基因和蛋白质地图的绘制正在全球范围内如火如荼地进行。

  然而位于蛋白质和细胞表面,发挥着重要作用的聚糖,在当时却没有工具用来分析。

  当时,卡罗琳·贝尔托西意图绘制一种能将免疫细胞吸引到淋巴结的聚糖图谱,但仅仅为了掌握多聚糖的功能就用了整整四年的时间。

  后来,受到一位德国科学家的启发,她打算在聚糖上面添加可识别的化学手柄来识别它们的结构。

  由于要在人体中反应且不影响人体,所以这种手柄必须对所有的东西都不敏感,不与细胞内的任何其他物质发生反应。

  经过翻阅大量文献,卡罗琳·贝尔托西最终找到了最佳的化学手柄。

  巧合是,这个最佳化学手柄,正是一种叠氮化物,点击化学的灵魂。通过叠氮化物把荧光物质与细胞聚糖结合起来,便可以很好地分析聚糖的结构。

  虽然贝尔托西的研究成果已经是划时代的,但她依旧不满意,因为叠氮化物的反应速度很不够理想。

  就在这时,她注意到了巴里·夏普莱斯和莫滕·梅尔达尔的点击化学反应。

  她发现铜离子可以加快荧光物质的结合速度,但铜离子对生物体却有很大毒性,她必须想到一个没有铜离子参与,还能加快反应速度的方式。

  大量翻阅文献后,贝尔托西惊讶地发现,早在1961年,就有研究发现当炔被强迫形成一个环状化学结构后,与叠氮化物便会以爆炸式地进行反应。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  2004年,她正式确立无铜点击化学反应(又被称为应变促进叠氮-炔化物环加成),由此成为点击化学的重大里程碑事件。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  贝尔托西不仅绘制了相应的细胞聚糖图谱,更是运用到了肿瘤领域。

  在肿瘤的表面会形成聚糖,从而可以保护肿瘤不受免疫系统的伤害。贝尔托西团队利用生物正交反应,发明了一种专门针对肿瘤聚糖的药物。这种药物进入人体后,会靶向破坏肿瘤聚糖,从而激活人体免疫保护。

  目前该药物正在晚期癌症病人身上进行临床试验。

  不难发现,虽然「点击化学」和「生物正交化学」的翻译,看起来很晦涩难懂,但其实背后是很朴素的原理。一个是如同卡扣般的拼接,一个是可以直接在人体内的运用。

「  点击化学」和「生物正交化学」都还是一个很年轻的领域,或许对人类未来还有更加深远的影响。(宋云江)

  参考

  https://www.nobelprize.org/prizes/chemistry/2001/press-release/

  Pfenninger, A. Asymmetric Epoxidation of Allylic Alcohols: The Sharpless Epoxidation[J]. Synthesis, 1986, 1986(02):89-116.

  Rao A S . Addition Reactions with Formation of Carbon–Oxygen Bonds: (i) General Methods of Epoxidation - ScienceDirect[J]. Comprehensive Organic Synthesis, 1991, 7:357-387.

  Kolb HC, Finn MG, Sharpless KB. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew Chem Int Ed Engl. 2001 Jun 1;40(11):2004-2021.

  https://www.nobelprize.org/uploads/2022/10/popular-chemistryprize2022.pdf

  https://www.nobelprize.org/uploads/2022/10/advanced-chemistryprize2022.pdf

  Demko ZP, Sharpless KB. A click chemistry approach to tetrazoles by Huisgen 1,3-dipolar cycloaddition: synthesis of 5-acyltetrazoles from azides and acyl cyanides. Angew Chem Int Ed Engl. 2002 Jun 17;41(12):2113-6. PMID: 19746613.

着力培养一流交通人才 推进交通科技自立自强******

  【深入学习贯彻党的二十大精神·北京交通大学】

着力培养一流交通人才 推进交通科技自立自强

——北京交通大学深入学习贯彻党的二十大精神

光明日报记者 靳晓燕 光明日报通讯员 张安梅 龚家琦

  理论学习交流研讨、深入基层解析形势、特色宣讲入脑入心……从教室到实验室、从会议室到报告厅、从项目现场到云端课堂,党的二十大召开以来,北京交通大学掀起学习宣传贯彻党的二十大精神的热潮,全校师生通过深入学习领会党的二十大报告的丰富内涵和深邃理论,感悟思想伟力,汲取奋进力量。

  “习近平总书记在报告中提出‘以中国式现代化推进中华民族伟大复兴’的重要论述,并用很大篇幅阐述了教育强国、科技强国和人才强国战略,特别强调人才自主培养的重要意义。我们很受鼓舞,也深感责任重大。”北京交通大学校长、党委副书记王稼琼表示,“作为一所特色鲜明的‘双一流’高校,我们将以党的二十大精神为统领,全面落实立德树人根本任务,提高人才培养和科技创新质量,为教育强国、科技强国和交通强国战略贡献交大力量。”

着力培养一流交通人才 推进交通科技自立自强

北京交通大学一角 资料图片

  深学细悟,天南海北同频共振

  在会议室、报告厅、办公室,在教室、宿舍、工程现场……北京交通大学师生准时守候在屏幕前收看党的二十大开幕会盛况。

  莽莽高原,茫茫雪域,一望无际的旷野之中,青藏线犹如钢铁巨龙,蜿蜒于世界屋脊。在国家西部战略规划重点项目“青藏铁路格拉段道岔更换和信号系统改造工程”现场,北京交通大学铁路卫星导航实验室师生怀着激动的心情线上聆听了报告。实验室学生郭旗说:“从一名在校研究生到施工现场的一线工作人员,看着一辆辆列车奔驰在雪域高原,为青藏高原注入源源不断的发展动力,我更加坚定决心,要让青春在全面建设社会主义现代化国家的火热实践中绽放绚丽之花。”

  党的二十大报告提出的一系列新理念新思想新战略,扎根中国大地,回答时代之问,激励人心,催人奋进。

  2022年10月16日,北京交通大学召开党委理论中心组学习会议,第一时间以“学习领会党的二十大精神”为主题展开交流研讨。连日来,校领导以上率下,结合讲授形势与政策课、党课、巡听旁听二级中心组学习等多种渠道与方式,深入师生、深入基层,紧密围绕党的二十大报告提出的新观点、新论断、新思想广泛开展宣讲,同时聚焦学校实际与学科特色,引导广大干部师生积极将理论学习成果转化为推动实践的支撑与动力。

  形势与政策课“党的二十大精神”专题教研组集体备课会上,气氛热烈。“要对学生讲清贯穿其中的理论逻辑、历史逻辑和实践逻辑,推动党的二十大精神‘进教材、进课堂、进学生头脑’。”形势与政策课第一教研组组长韩振峰说。

  用“青言青语”讲好时代故事,让党的二十大精神“声入人心”。北京交通大学学生微宣讲团牵头举办“‘交融二十大,踔厉向未来’深入学习贯彻党的二十大精神主题宣讲活动(北京专场)”,来自北京大学、清华大学等9所高校的青年宣讲人带来了精彩的主题宣讲。

  美好蓝图已绘就,奋楫扬帆正当时。学校组织3000余名师生分批参观北京展览馆“奋进新时代”主题成就展,同上一堂行走的爱国主义“大思政课”,凝聚喜庆二十大、奋进新时代的磅礴力量。

  在中国共产党历史展览馆,学校50名师生代表参加学习贯彻党的二十大精神中央宣讲团首场报告会。会后,大家纷纷表达心声,要坚定理想信念,听党话、跟党走,在实际学习、工作、生活中锤炼过硬本领,把个人理想和奋斗自觉融入党和国家的发展中,踔厉奋发,勇毅前行。

着力培养一流交通人才 推进交通科技自立自强

  北京交通大学“全国高校黄大年式教师团队”带头人、土木建筑工程学院院长高亮(中)与团队师生在一起。资料图片

  勇担使命,创新交通特色人才培养

  功以才成,业由才广。党的二十大报告把“深入实施人才强国战略”摆在突出位置。

  为助力“交通强国”战略,北京交通大学长期以来对人才培养战略细致谋划,早在2004年就积极探索有效的培养模式,开设了“詹天佑班”“茅以升班”。2020年,学校成立詹天佑学院,这是为发挥“智慧交通”一流学科群领域优势而设置的拔尖创新人才培养特区。

  “3+5”本博连读,书院制、导师制、学分制,“天佑下午茶”“天佑殿堂论”“天佑大师享”等丰富的学术活动……从培养模式到管理方式,从成长空间到学术氛围,从专业能力到综合素质,詹天佑学院让众多学子在学海自由翱翔,致力于培养基础学科的一流科学家和智慧交通领域的科技创新领军人才。

  “怀抱梦想,脚踏实地,砥砺前行,科研报国,努力成长为引领智慧交通发展的未来科技领军人才,为实施交通强国、科技强国战略贡献青春力量!”詹天佑学院首届学生樊世豪在收听党的二十大报告后更加明确了未来的努力方向。

  近年来,北京交通大学持续推进人才培养建设改革,着力培育堪当民族复兴重任的时代新人。红果园里,大批师德高尚、学术精湛的教师引领学生在国家重点实验室、前沿科学中心、国家工程研究中心、国家高端智库等国家级科研平台收获学术成就;红果园外,交大人在青藏铁路、重载运输、高铁建设等国家重大工程屡建功勋。

  中国大地上,交大青年深入助力冰雪健儿的风洞辅助训练系统研发、深入内蒙古科左后旗的旅游规划、深入云南偏远的富宁县的公益桥建设……在一次次“知”与“行”的实践中,交大人夯实专业知识,理解“科学家”责任,筑起“交通强国”梦想。

着力培养一流交通人才 推进交通科技自立自强

北京交通大学校园景色 资料图片

  知行合一,助力交通强国建设

  科技兴则国家兴,创新强则民族强。党的十八大以来,北京交通大学深入贯彻习近平总书记一系列重要讲话和重要指示批示精神,响应科技强国、交通强国的建设要求,以特色引领和创新赋能为“两个轮子”,主动谋划,对接国家重大需求,为国家重点铁路建设项目注入动力,奋力推进交通科技自立自强。

  “完善科技创新体系”“加快实施创新驱动发展战略”“强化国家战略科技力量”“提升国家创新体系整体效能”,党的二十大报告中关于科技创新的系列表述掷地有声,让科研工作者心潮澎湃。

  全国政协委员、无党派代表人士、学校轨道交通控制与安全国家重点实验室首席教授钟章队表示,作为交通人,我们要认真学习宣传贯彻二十大精神,落实好科技强国、交通强国、人才强国战略,瞄准交通领域的瓶颈和短板,破解卡脖子关键核心技术,推动我国从轨道交通大国迈向轨道交通强国。

  研发国内首套全自动无人驾驶系统,实现自主化技术零的突破;攻克高性能磁性液体制备与密封技术难题,打破国外技术垄断;创建轨道安全状态监测方法和轨道变形识别预警技术,达到国际先进水平;构建城市地下工程建设的安全保障技术体系,达到世界领先水平;研发国际领先的新一代智慧型城市轨道交通牵引供电系统、多模式储能系统,引领中国新能源轨道交通车辆发展……一个个中国乃至世界第一,见证着交大和国家的蓬勃发展,交大人的光荣与梦想早已与“交通强国”紧密相连。

  “奋进新征程,北京交通大学将瞄准事关国家安全和经济建设发展的重大科学问题,在承担大项目、培养大人才、服务大工程、形成大成果、推进大转化上继续以钉钉子精神狠抓落实,锐意进取、奋发有为,作出更大贡献。”王稼琼表示。

  《光明日报》( 2023年01月09日 05版)

中国网客户端

国家重点新闻网站,9语种权威发布

彩神地图